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Abstract. Jet clustering algorithms are widely used to analyse hadronic events in high energy collisions.
Recently a new clustering method, known as ‘Cambridge’, has been introduced. In this article we present
an algorithm to determine the transition values of ycut for this clustering scheme, which allows to resolve
any event to a definite number of jets in the final state. We discuss some particularities of the Cam-
bridge clustering method and compare its performance to the Durham clustering scheme for Monte Carlo
generated e+e− annihilation events.

1 Introduction

In collider physics, clustering of the experimentally acces-
sible hadronic final states is used to determine the under-
lying parton structure of events. In e+e− annihilation the
widely known JADE [1] and Durham [2] jet algorithms
have become indispensable in this process, permitting a
wide range of important tests of QCD, allowing refined
measurements of electro-weak physics with hadronic final
states and being used in searches for new physics.

Recently a new jet clustering scheme, known as Cam-
bridge, has been introduced [3]. This scheme is a modifi-
cation of the original Durham kT -clustering scheme. The
Cambridge algorithm is designed to minimise the forma-
tion of spurious ‘junk-jets’, jets formed from a multitude
of low transverse momentum particles, unrelated to the
underlying parton structure.

For all the above mentioned algorithms, clustering of
the final state is performed iteratively and is terminated at
a clustering specific resolution scale, generically denoted
by the resolution parameter ycut. By changing the value
of ycut, the final state is resolved into a varying number of
jets. The Cambridge algorithm involves three basic com-
ponents in this iterative process. It uses an ordering vari-
able, vij , a test variable, yij , and a recombination pro-
cedure. In JADE-type jet clustering algorithms only two
basic components are involved, since the ordering variable,
vij , and the test variable, yij , are identical.

In this note we review the Cambridge finder and dis-
cuss some of its experimental peculiarities. In terms of
computing this algorithm is more complex compared to
the JADE and Durham algorithms. Due to the distinction
between test and ordering variables, the sequence of clus-
tering now depends on the value of ycut. We show that the
jet multiplicity obtained with this algorithm is not mono-
tonically decreasing for increasing ycut, and that for some
events it is impossible to resolve a certain jet multiplic-

ity. Therefore the concept of the ‘transition values in ycut’
has to be defined more precisely. The transition value at
which the event classification changes from n-jets to m-
jets, when going to larger values for ycut, will subsequently
be referred to as ym←n value.

Next we developed a fast algorithm to obtain the tran-
sition values ym←n for the Cambridge finder. Using this
algorithm, we compare results for Monte Carlo generated
e+e− → qq̄ events between the Durham and Cambridge
finder. We compare their performance in determining the
size of the hadronization corrections. As another exam-
ple, we determine the performance for hadronic decays of
W+W− production at LEP2 [4]. Finally we give our con-
clusions and cite an address to download our FORTRAN
code.

2 The Cambridge algorithm

In JADE-type jet clustering algorithms one iteratively
combines particles to form final state jets. First one intro-
duces a ‘test variable’ yij . The pair of two objects i and j
with smallest value for yij is selected and its objects are
combined or the iteration is terminated when yij > ycut
for all pairs of objects. For the JADE and Durham algo-
rithms, the test variables yJ

ij and yD
ij are defined respec-

tively as

yJ
ij =

2EiEj

E2
vis

(1 − cos θij) (1)

yD
ij =

2 min(E2
i , E2

j )
E2

vis

(1 − cos θij) (2)

where Ei and Ej denote the energies of particles i and j
and θij their opening angle. Note that we normalise the
values of yJ

ij and yD
ij to the visible energy, Evis, which is
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the sum of energies for all particles observed in the final
state. The second ingredient is the recombination proce-
dure. Normally the E-scheme is taken, for which the four-
momentum of the resulting object is simply the sum of
the four-momenta of the two objects pi and pj .

In contrast to this the Cambridge algorithm involves
three basic components to form the final state jets. The al-
gorithm starts from a table of Nobj primary objects, which
is the set of the particles’ four-momenta. It starts cluster-
ing the pair of particles with the smallest opening angle,
using the ordering variable vij . The test variable yD

ij , which
is identical to the one for the Durham algorithm, decides
when the iterative procedure is stopped. It is subsequently
denoted by yij . The algorithm proceeds as follows:

1. If only one object remains, store this as a jet and stop.
2. Select the pair of objects i and j that have the minimal

value for their ordering variable, vij , with vij = 2(1 −
cos θij).

3. Inspect the test variable yij .
– If yij < ycut then combine i and j in a new object

using the E-scheme. Remove particles i and j from
the table of objects that remain to be combined and
add the new object with four-momentum pi + pj .

– If yij ≥ ycut then store the object i or j with the
smaller energy as a separated jet and remove it
from the table. The higher energetic object remains
in the table.

Removing the softer of two resolved objects, as described
in the last step, is called soft freezing. It prevents the softer
jet from attracting any extra particles, thereby reducing
non-intuitive clustering effects.

3 The Cambridge algorithm: an example

In order to test the various clustering algorithms, we gen-
erate Monte Carlo e+e− → qq̄ events at

√
s = 91.2 GeV

with the PYTHIA event generator [5]. The generation in-
cludes parton showering (‘parton-level’), and subsequent
fragmentation and decays of the final state (‘hadron-level’).
The parameters of the Monte Carlo event generator are
adjusted in order to provide an optimal description of large
samples of hadronic Z0 decay data [6].

To illustrate the differences between the Cambridge
and Durham finders we present in Fig. 1 the three-
momenta of a typical event projected onto the xy-plane.
The underlying parton level is shown in the figure by the
thick arrows and consists of a quark q recoiling against a
q̄g system, with the gluon being relatively soft.

At the hadron level, the event is clustered again to
three final state jets, both with the Durham and Cam-
bridge algorithm. The final jets are indicated by thick ar-
rows, and the association of particles to the three jets is
indicated by various line styles.

In this example one clearly observes the positive ef-
fect of soft freezing on the hadronization corrections. In
the Cambridge algorithm the soft gluon jet is separated
and classified as a final state jet. Most particles in the
hemisphere are assigned in an intuitive way to the quark

Jet 1
Jet 2
Jet 3

Fig. 1. Display, projected onto the xy-plane, of a qq̄ gener-
ated event at

√
s = 91.2 GeV. The lengths of the arrows are

proportional to the energies of the objects. The jet-axes are
indicated by the arrows, left at the parton level, right at the
hadron level. The particle and jet three-momenta are shown
for the Cambridge and Durham algorithms separately. Parti-
cle association to jets is indicated with various line-styles. The
length of the parton and jet axes are scaled down by a factor
of four
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Fig. 2. Example of the jet multiplicity, Njet as function of ycut

for two Monte Carlo generated events. The dash-dotted line
is for the Durham algorithm, the full line for the Cambridge
algorithm. The points mark the ym←n transition values

jet. The three final jets closely resemble the underlying
parton structure. In contrast to this, in the Durham algo-
rithm more particles are clustered around the soft gluon,
so that the gluon jet becomes even more energetic than
the quark jet. It is obvious that in this example the final
state found for the Cambridge algorithm resembles the
parton structure more than the Durham algorithm.

As an illustration of some of the peculiarities of the
Cambridge algorithm, in Fig. 2 we present the jet multi-
plicity as function of ycut for two events. In the figures
the dashed lines correspond to the Durham algorithm,
whereas the full lines correspond to the Cambridge clus-
tering. For the Durham algorithm, the jet multiplicity is
decreasing monotonically for increasing ycut.



S. Bentvelsen, I. Meyer: The Cambridge jet algorithm: features and applications 625

In the Cambridge finder the situation is a little more
complex, as can be seen in the same figure. In the left plot
of Fig. 2 an example is given where

– the jet multiplicity is not monotonically decreasing for
increasing ycut.

In this example, at the resolution ycut ∼ 10−4.3, the jet-
multiplicity decreases from 6 to 5 to 4 when ycut increases,
but then increases from 4 to 5 again. At ycut ∼ 10−4.1

the multiplicity decreases from 5 to 4. At ycut ∼ 10−3.8 a
situation occurs where the jet multiplicity does not change
from being 4, but the four final state jets change their four-
momenta. The jet configuration of the two 5-jet states and
three 4-jet states are all different.

In the right plot of Fig. 2 we show an example where

– it may not be possible to resolve the event into a cer-
tain n-jet final state.

In this example, at ycut ∼ 10−3.3, the event changes from
being classified as a 6 jet event to a 3 jet event. For this
event, it is impossible to choose a value for ycut such that
the event is resolved into a 4 or a 5 jet configuration. This
feature is also present in the Durham algorithm.

Next we consider the particle to jet association for the
Cambridge algorithm. For the JADE and Durham algo-
rithms, when crossing a transition value in ycut towards
higher values, two of the jets are merged into one new
jet while all other jets are left untouched. The resulting
new jet consists of exactly all particles that belonged to
the two merged jets, and the subjet history of jets can be
traced unambiguously. In the Cambridge algorithm this
need not be the case, since the sequence of recombination
may be different for different values of ycut. It thus can
happen that the particle contents of a jet at a given value
for ycut does not match the sum of the particle contents
of two resolved jets at lower values of ycut.

For many applications it is essential to obtain the tran-
sition values ym←n. For example, in previous studies of
e+e− annihilation data the value of y2←3 was analysed in
order to obtain αs(Q2) [7]. In other studies all events were
classified as four [8] or five [9] jets and their angular cor-
relations were studied in order to probe the non-Abelian
nature of QCD. In current studies at e+e− annihilation
energies reached by the LEP2 programme [4], events also
have to be clustered to four jets in order to determine the
W -boson characteristics in the hadronic decays of W+W−
pairs. Therefore, an algorithm to obtain all transition val-
ues ym←n with full information on the particle to jet as-
sociation is highly desirable.

4 Transition values of ycut

In the JADE and Durham algorithm, the sequence of clus-
tering of an event can be determined once and completely,
and is independent of the value of ycut. From this clus-
tering information about jet multiplicities, four-momenta
and jet-particle association, can subsequently be retrieved
for any value of ycut. This is the strategy used in the

KTCLUS[10] and YKERN [13] packages. The final jet config-
uration is identical for all values of ycut between two sub-
sequent transition values. At the transition value yn←n+i,
with i ≥ 1, the event flips from a (n + i)-jet to a n-jet
configuration. The transition values for the JADE and
Durham algorithms are ordered in ycut. Using the tran-
sition values one can select a value for ycut such that the
event is resolved into one of the possible number of jets.

In contrast to this, the clustering sequence in the Cam-
bridge algorithm depends on the value of ycut because it
distinguishes between ordering and testing variables. It is
therefore no longer straightforward to calculate the tran-
sition values. In general, at the transition values ym←n

the event can flip between a n-jet configuration to a m-jet
configuration where n and m are not necessarily consecu-
tive or ordered. As it is important to obtain the values for
ym←n, it was suggested in [3] to perform a binary search in
ycut to determine these transition values, by repeated eval-
uation of the clustering. This proposal is not completely
satisfactory since such a search has an intrinsic limited
precision, might skip over several transition values and
becomes very computing time intensive.

We have developed a method to determine the tran-
sition values of ycut for the Cambridge finder exactly, as
follows. While performing the clustering at a particular
value of ycut, denoted by yinit, we keep track of the max-
imum value of yij , between any two objects i and j en-
countered in this process, with yij being always smaller
than yinit. By construction this maximum value, which we
denote by ymax

ij , is smaller than yinit. We now note that for
any value of ycut ∈ [

ymax
ij , yinit

)
, the Cambridge algorithm

will follow the same clustering sequence. Only when the
cluster algorithm is performed with a value ycut smaller
than ymax

ij , the condition yij ≥ ycut is satisfied at least
once more and the subsequent clustering sequence may
change completely. The value ymax

ij is therefore one of the
ycut transition values. Note that the clustering may also
change completely for values of ycut larger than yinit.

These observations can be utilised to scan the complete
region of ycut. We therefore start by clustering the com-
plete event to a one-jet configuration by choosing ycut = 1
in the first step. After this step one iteratively repeats
the clustering to calculate smaller and smaller values of
ymax

ij at which the clustering changes, and thereby calcu-
lates smaller and smaller transition values. The process
terminates if either the number of resolved jets equals the
number of input objects or if the desired number of jets is
resolved. To summarise:

1. Start with value yinit = 1 and set ycut = yinit.
2. Perform the Cambridge jet clustering for Nobj objects.

During the clustering, keep track of all values of yij

between all objects i and j, and determine their max-
imum value, ymax

ij .
3. Store the value of ymax

ij , the number of jets, n, their
four-momenta and the jet-particle association. The clus-
tering for ycut > ymax

ij is now completely determined.
4. The algorithm stops if:
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– The number of resolved jets equals the number of
input objects, n = Nobj. Then the event is classified
completely and the algorithm necessarily stops.

– The desired number of jets or a preset lower limit
in ycut is reached, and the algorithm is stopped.

5. Set ycut = ymax
ij and go to step 2.

Once this process has been performed, all information
about the clustering is accessible without any appreciable
additional computing time. The total amount of comput-
ing time is proportional to the desired jet-multiplicity. For
example, to study four jet final states with the Cambridge
finder requires approximately four times as much comput-
ing time compared to the Durham or JADE algorithms.

Instead of the top-down approach for which the clustering
starts at ycut = 1 as explained above, a bottom-up ap-
proach is in principle also possible. One may implement
the bottom-up approach by starting the clustering at the
lowest value ycut = 0. For Nobj given at the start of the
clustering, one finds the pair of objects with smallest value
vij (corresponding to the pair closest in angle) and deter-
mines the corresponding value for yij . Then the two pos-
sible cases are considered: one in which the softer object is
frozen, the other in which the two objects are combined.
In both cases the number of objects that remain to be
combined is reduced by one. This combinatorical proce-
dure is subsequently continued, and all possible clustering
sequences are listed. The procedure terminates when only
one object remains.

From the corresponding values for yij , saved for each
step, one can deduce the final transition values ym←n and
the jet configuration associated to them. Note that the
number of possible clustering sequences is proportional to
2Nobj+1, which limits the practical use of the bottom-up
approach.

5 Monte Carlo results

Jet finder comparison and hadronization corrections

With the transition values ym←n defined both for the
Cambridge and Durham algorithms, we compare, as an
example, the values for y2←3. In [14] similar studies have
been performed to compare the performance of the Durham
and JADE algorithms. Events for which the transition
value y2←3 does not exist are discarded. In all the fol-
lowing we will define the region with the highest value for
ycut as the nominal ycut region. Here, in Fig. 3a we show
the correlation of the Cambridge and Durham algorithms
for y2←3 at the parton level, at the end of the PYTHIA
parton shower. For most of our generated events, the ob-
tained values for y2←3 are identical for the Cambridge and
the Durham algorithms (approximately 75% of the events
are found on the line in the figure). For a small fraction
of events, the value obtained with the Cambridge algo-
rithm is smaller compared to the value for the Durham
algorithm. At the hadron level, as shown in Fig. 3b, the
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Fig. 3. Monte Carlo generated events at
√

s = 91.2 GeV using
PYTHIA [5]. In a we present the correlation between y2←3

calculated using the Cambridge and y2←3 calculated using the
Durham algorithm, at the parton level. Note that the majority
of events have identical values of y2←3 for both algorithms, in
b the same is shown for the hadron level
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Fig. 4. Monte Carlo generated events at
√

s = 91.2 GeV using
PYTHIA [5]. In a we present the correlation between y2←3 cal-
culated at the parton level and y2←3 calculated at the hadron
level, using the Durham algorithm, in b the same is shown for
the Cambridge algorithm

values at low y2←3 obtained using the Cambridge algo-
rithm are smaller for almost all events, but become similar
for the two algorithms for increasing values of y2←3. At
the hadron level, approximately 15% of the events have
identical values for y2←3 for both algorithms.

Next, in Fig. 4a and 4b, we compare the hadronization
corrections for the Cambridge and Durham algorithms.
We present the correlation between the transition values
y2←3 calculated at the hadron and at the parton level,
for both. The line indicates the ideal case for which equal
values for y2←3 at both levels are found. For the Durham
algorithm the difference in y2←3 at the parton and hadron
level is small. When going to lower y2←3 values, the dis-
tribution broadens and shifts toward smaller y2←3 values
at the hadron level. For the Cambridge algorithm, at high
values of y2←3 the parton and hadron level correlation is
similar to the one for the Durham algorithm. Whereas,
when going to smaller values for y2←3, the values at the
hadron level get increasingly larger with respect to the
parton level values. The width of the distribution is simi-
lar to that for the Durham algorithm. In order to quantify
the differences, we calculated the mean of the logarithmic
ratio of the y2←3 values for the parton level and the hadron
level: this value equals 0.232 ± 0.002 for the Durham al-
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Fig. 5. In a we show for both the Cambridge and the Durham
algorithms the mean logarithmic ratio between y2←3 calcu-
lated at the parton and the hadron level, as function of y2←3

at the parton level, using the PYTHIA event generator. Iden-
tical values for y2←3 are represented by the full horizontal line.
The dashed lines correspond to a deviation between the parton
and hadron level by a factor of two, in b we present the ab-
solute value of the mean as calculated in a. The three regions
indicated in both figures by I, II and III are discussed in the
text

gorithm, and 0.257 ± 0.002 for the Cambridge algorithm,
which indicates that the overall hadronization corrections
for the Durham algorithm are ∼ 10% smaller than for the
Cambridge algorithm. Note however that the hadroniza-
tion corrections do not only depend on the jet algorithm
but also on the hadronization model used.

The mean hadronization corrections can be studied
more directly, as a function of ycut, from plots as pre-
sented in Figs. 5a and 5b. In Fig. 5a we show the mean
of the logarithmic ratio of the values y2←3 for the parton
and hadron level,

〈
log10(y2←3

parton/y2←3
hadron)

〉
, as a function

of the transition value at the parton level. When calculat-
ing the mean deviation between hadron and parton level
for each value y2←3, the contribution to the hadroniza-
tion corrections for many events may cancel. To exclude
effects due to cancellation we present in Fig. 5b the size
of the hadronization corrections. We show the mean abso-
lute difference of y2←3 calculated on the parton and at the
hadron level,

〈
Abs

(
log10(y2←3

parton/y2←3
hadron)

)〉
, as a function

of y2←3 calculated at the parton level.
To compare the performance of the two jet finders we

distinguish in Fig. 5a and 5b three regions in y2←3, de-
noted by I, II and III. In region I, for values of y2←3

above 10−2, the hadronization corrections are small and
comparable for both algorithms. A fraction of about 37%
of our generated events belongs to this region.

Region II is defined for values of y2←3 between 10−3.2

and 10−2. In this region differences between the two algo-
rithms occur. The mean deviation for the Durham algo-
rithm reaches a maximum of about 20%, and vanishes at
y2←3 ∼ 10−2.8, as can be seen in Fig. 5a. However, Fig. 5b
shows that this decrease is due to cancellations and that
the absolute hadronization corrections increase at y2←3 ∼
10−2.8. For the Cambridge algorithm a different behaviour
is observed. The mean deviation reaches a maximum of
100% for this algorithm, at y2←3 ∼ 10−2.6, implying large
hadronization corrections. The absolute hadronization cor-

Hadron level
Parton level

log10(ycut)

Hadron level
Parton level

log10(ycut)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-4 -3 -2 -1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-4 -3 -2 -1

Fig. 6. In a we present the relative jet production rates Rn,
as a function of ycut, for the Durham algorithm, using the
PYTHIA event generator. The full lines with the points cor-
respond to the hadron level and the dashed line correspond to
the parton level. For R5 we summed all contributions for jet
multiplicities of 5 and larger, in b the same is shown for the
Cambridge algorithm

rections for the Cambridge algorithm, as shown in Fig. 5b,
reach a maximum at about 10−2.6, and then decrease un-
til the value for the Durham algorithm is reached. In the
whole region II, where about 49% of our generated events
can be found, hadronization corrections for the Cambridge
algorithm are significantly larger than for the Durham al-
gorithm.

In region III, for values of y2←3 below 10−3.2, the
figures show that the hadronization corrections are large
for both algorithms and that they increase rapidly towards
smaller values of y2←3. The corrections for the Cambridge
algorithm are smaller compared to the Durham algorithm.
However, only about 14% of our generated events can be
found in region III.

Our analysis of the hadronization corrections for y2←3

shows that the Cambridge algorithm performs clearly bet-
ter only in the region of low y2←3 values (region III).
This region contains 14% of the events and the correc-
tions there are large for both algorithms. In all other re-
gions the Durham finder performs equally well (region I)
or even significantly better (region II). These two regions
contain a fraction of 85% of our generated e+e− → qq̄
events. These basic tendencies of the hadronization cor-
rections are also found when studying the transition value
y3←4 and y4←5. We also studied the hadronization cor-
rections using the HERWIG generator [11], whose param-
eters were adjusted in order to describe hadronic Z0 de-
cay data accurately [12], and found the same behaviour
for both the Cambridge and the Durham algorithms as
shown above. Note that for very low values of ycut the
approximations used for the implementation of QCD in
PYTHIA or HERWIG might not give a reliable descrip-
tion of the hadronization process. Therefore, for very low
values of ycut the jets returned by the Cambridge algo-
rithm may correspond closer to the underlying parton
structure than can be shown in these Monte Carlo studies.
Classical tests of QCD rely on relative production rates for
multijet hadronic decays, defined as Rn = σn/σtot [13]. In
Figs. 6a and 6b we present the relative production rates
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for two, three, four, and five or more jet final states, for
the hadron level and the parton level. For these figures we
used the same set of e+e− → qq̄ events as before. In Fig. 6a
the performance for the Durham algorithm is shown. For
all ycut values between one and approximately 10−2.8 the
hadron and parton level agree reasonably well. When go-
ing to smaller values of ycut the curves for the two lev-
els increasingly deviate. For the Cambridge algorithm the
hadronization corrections are larger for the region in ycut
where the Durham algorithm performs well, between ycut
of one and approximately 10−2.8. However, when going to
lower values of ycut the differences between hadron and
parton level are, for most jet multiplicities, smaller than
for the Durham algorithm.

To summarise our investigations of the hadronization
corrections, we conclude that the Durham algorithm pro-
vides smaller hadronization corrections for a large region
in ycut.

In [3], the hadronization corrections for the mean jet
multiplicity, 〈njet〉 =

∑∞
1 nRn, was studied. There it was

found that hadronization corrections for the Cambridge
and Durham algorithms are small for values of ycut >
10−3.2. Our Figs. 6b show that for these values of ycut the
hadronization corrections for each jet production rate, Rn,
are sizable for the Cambridge algorithm, whereas for the
Durham algorithm they are small. The small hadroniza-
tion corrections found for the Cambridge algorithm in the
study of the mean jet rate 〈njet〉 are due to fortuitous
cancellations in the individual jet production rates.

Multiple and impossible jet multiplicities

As already indicated, the transition values ym←n in the
Cambridge algorithm need not be the transition between
two consecutive jet-multiplicities. Several intervals in ycut
may lead to the same jet-multiplicity, and they have in
general different jet four-momenta. Secondly, it need not
always be possible to cluster the event to any required jet
multiplicity.
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Fig. 8. Monte Carlo generated W+W− events at
√

s = 184
GeV. In a we present the mean of the opening angles between
the momenta of the four partons and of the four jets at the
hadron level. The shaded histogram shows the events for which
one four-jet configuration was found. The open histograms cor-
respond to the set of events were the Cambridge algorithm re-
turned two four-jet configurations. The one with the dashed
line corresponds to the configuration with the higher values of
ycut, whereas the one with the full line corresponds to the con-
figuration with the lower values of ycut, in b the same is shown,
but for the mean absolute energy difference between the four
parton and hadron jets

In order to determine the frequency that this might
occur, we generated for Fig. 7 e+e− → qq̄ Monte Carlo
events with full hadronization, at

√
s = 91.2 GeV. The

full points present the fraction of events that have mul-
tiple regions in ycut with the same jet multiplicity, as a
function of the jet-multiplicity. For our generated events,
for example, about 2.2% have multiple regions in ycut that
lead to a four-jet final state, albeit with different jet four-
momenta. In the same figure the open points show the
fraction of events were the indicated number of jets could
not be resolved. For example, in about 2.5% of events no
four-jet configuration could be found1.

The figure shows that the fraction of impossible jet
multiplicities and multiple jet multiplicities increases with
increasing n, reaches a maximum at around n = 12, and
decreases again. The generated events have a mean total
multiplicity of 44.2, and 95% of the events have a mul-
tiplicity larger than 25. Note that both distributions are
naturally limited by the input number of four-momenta in
each event.

As another example we generated hadronic decays of
W+W− pairs at LEP2 [4] using PYTHIA: e+e− → W+W−
→ qq̄′q′′q̄′′′, at

√
s = 184 GeV. Information about the

kinematics of the two W ’s can be obtained by forcing the
hadronic final state to four jets.

Using the Cambridge finder, we find that about 0.9%
of the events have multiple regions in ycut with four final
state jets. For those events one therefore has the freedom
to select the set of jets with the larger ycut values, or
the set with the smaller ycut values. Clearly the selection
which corresponds closer to the four primary partons is
preferred. In Fig. 8a we compare the mean opening angle
between the jets and primary four partons, and in Fig. 8b

1 Using the Durham algorithm the fraction of events for
which no four-jet configuration could be found is about 0.3%
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the mean absolute energy difference between the jets and
the primary partons. It can be clearly seen that in both
cases the resolution is better for the fraction of 99% of
events in which only one four-jet configuration is found.
For the small fraction of events where two four-jet config-
urations were found, the jet configuration with the lower
values of ycut matches the four primary partons better
than the one with larger values of ycut, which can be ex-
plained by the following observation. In the majority of
events for which the Cambridge algorithm returned two
four jet configurations the appearance of hard gluon ra-
diation in the parton shower was observed. Detailed in-
spection revealed that the hard gluon, radiated from a
quark-pair originating from one W , points in the direc-
tion of a quark originating from the other W . The config-
uration with the low value of ycut correctly separates the
gluon from this quark by the mechanism of soft-freezing,
whereas they are merged for the configuration with the
larger value of ycut. The correspondence between partons
and jets is better in the configuration with the lower value
of ycut.

6 Conclusions

In this note we review the Cambridge jet clustering algo-
rithm, as was recently introduced in [3]. We show some
of its particularities for Monte Carlo generated events.
Firstly, the algorithm may find several regions in ycut
with identical final state multiplicity, but different jet four-
momenta. Secondly, for some events it is impossible to re-
solve a certain jet multiplicity. The first property is absent
in the Durham algorithm.

We propose a fast, new algorithm that is able to de-
termine the transition values for ycut, based on the YCLUS
package. All transition values, jet multiplicities, jet four-
momenta and the jet to particle associations are derived
and stored, and can be subsequently inferred for all val-
ues of ycut without any substantial additional computing
time.

Using this algorithm we determine the hadronization
corrections of e+e− → qq̄ generated events according to
PYTHIA, by comparing parton and hadron level values
for y2←3, both for the Durham and Cambridge algorithms.
This comparative study of the two algorithms is completed
by a presentation of the relative jet production rates. For
a large interval of ycut values the hadronization correc-
tions for the Cambridge algorithm are found to be signif-
icantly larger than for the Durham algorithm. However,
in the region of very small values of ycut (ycut < 10−3.2),
the hadronization corrections are large, but better under
control for the Cambridge algorithm. Note that for very
low values of ycut the reliability of the comparative Monte
Carlo studies is limited due to the fact that for these val-
ues of ycut the approximations used for the implementa-
tion of QCD in PYTHIA might not give an appropriate
description of the hadronization process.

Further, we present for the Cambridge algorithm the
fraction of events for which a certain jet multiplicity could
never be resolved, or could be resolved multiple times.

Four jet final states were explicitly studied in hadronic de-
cays of W+W− events. The large fraction of events where
just one four jet configuration was found has better energy
and angular resolution than the small fraction of events
with multiple four jet configurations.

Fortran code, containing our CKERN routines to obtain
the ycut transition values, can be obtained from the World-
Wide Web at
http://wwwcn1.cern.ch/˜stanb/ckern/ckern.html.
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